

Total: 5

BENHA UNIVERSITY

COURSE SPECIFICATIONS (2011-2012)

FACULTY OF ENGINEERING

A. Basic Information

Course Title : Automatic Control (1)		Code : EPE 314
Lecture: 3	Tutorial: 2	Practical: -
Program on which the course is given	B.Sc. Electrical Engineering (Electrical	Power and Machines)
Major or minor element of program:	Major	
Department offering the program:	Electrical Engineering Department	
Department offering the course:	Electrical Engineering Department	
Academic year / level:	Third Year / First Semester	
Date of specifications approval:	10/5/2006	

B. Professional Information

1. Overall aims of course

By the end of the course the students will be able to:

- * Understand the broad classifications of automatic control systems.
- * Understand mathematical computations techniques in automatic control systems.
- * Understand the analysis of electrical and mechanical control systems.

2. Intended Learning outcomes of Course (ILOs)

By completion of the course, the student should be able to:

a. Knowledge and Understanding:

- a.1) Concepts and theories of mathematics and sciences, appropriate to the discipline.
- a.4) Principles of design including elements design, process and/or a system related to specific disciplines.
- a.5) Methodologies of solving engineering problems, data collection interpretation.
- a.8) Current engineering technologies as related to disciplines.

b. Intellectual Skills

1/6

COURSE SPECIFICATIONS (2011-2012)

FACULTY OF ENGINEERING

- b.1) Select appropriate mathematical and computer-based methods for modeling and analyzing problems.
- b.2) Select appropriate solutions for engineering problems based on analytical thinking.
- b.3) Think in a creative and innovative way in problem solving and design.
- b.4) Combine, exchange, and assess different ideas, views, and knowledge from a range of sources.
- b.5) Assess and evaluate the characteristics and performance of components, systems and processes.
- b.7) Solve engineering problems, often on the basis of limited and possibly contradicting information.
- b.11) Analyze results of numerical models and appreciate their limitations.

c. Professional and Practical Skills

c.1) Apply knowledge of mathematics, science, information technology, design, business context and engineering practice to solve engineering problems.

c.3) Create and/or re-design a process, component or system, and carry out specialized engineering designs.

c.6) Use a wide range of analytical tools, techniques, equipment, and software packages pertaining to the discipline and develop required computer programs.

c.7) Apply numerical modeling methods to engineering problems.

d. General and Transferable Skills

- d.1) Collaborate effectively within multidisciplinary team.
- d.2) Work in stressful environment and within constraints.
- d.3) Communicate effectively
- d.6) Effectively manage tasks, time, and resources.
- d.7) Search for information and engage in life-long self learning discipline.
- d.8) Acquire entrepreneurial skills.
- d.9) Refer to relevant literatures.

COURSE SPECIFICATIONS (2011-2012)

FACULTY OF ENGINEERING

1. Contents

No	Торіс	No. of	ILOs	Teaching / learning methods	Assessment method
		nours		and strategies	
1	Introduction to control system	5	a1 , b1 , c1 , d1	Lectures, Practical training / laboratory, Class activity, Case study, Assignments / homework	Home Assignments Quizzes , Oral Exam
2	Mathematical fundamentals	5	a1 , b1 , c1	Lectures, Practical training / laboratory, Class activity, Case study, Assignments / homework	Home Assignments Quizzes , Oral Exam
3	open loop and closed - loop control system.	5	a1 , a4 , b1 , c1 ,	Lectures, Practical training / laboratory, Class activity, Case study, Assignments / homework	Home Assignments Quizzes , Oral Exam
4	Transfer functions and block diagrams	5	a1 , a4 , b2 , b5 , c1	Lectures, Practical training / laboratory, Class activity, Case study, Assignments / homework	Home Assignments Quizzes , Oral Exam
5	Signal flow graph models	5	a1 , a4 , b1 , b4 , c1	Lectures, Practical training / laboratory, Class activity, Case study, Assignments / homework	Home Assignments Quizzes , Oral Exam
6	control systems components	5	a4 , a5 , b2 , b7 , b11 , c1 , d8	Lectures, Practical training / laboratory, Class activity, Case study, Assignments / homework	Home Assignments Quizzes , Oral Exam
7	Steady-state error and transient response of control systems	5	a1, a4, a5, b3, b5, c1, c7	Lectures, Practical training / laboratory, Class activity, Case study, Assignments / homework	Home Assignments Quizzes , Oral Exam
8	Mid term Exam	=	-5 1.2 -1 10	Lesternes Duration to the init of	H
9	Stability of control	5	a5, b2, c1, d8,	Lectures, Practical training /	Home Assignments

COURSE SPECIFICATIONS (2011-2012)

FACULTY OF ENGINEERING

	aviatoma Douth'a			laboratory Class activity Case	Ordenage Ordel Errore
	systems - Kouth's			laboratory, Class activity, Case	Quizzes, Orai Exam
				study, Assignments / homework	
10	State - space		a1, a5, a8, b2,	Lectures, Practical training /	Home Assignments
	representation of control	5	b3, b5, c1, d1,	laboratory, Class activity, Case	Quizzes , Oral Exam
	systems		d3,d9	study, Assignments / homework	
11	Angliggting of State			Lectures, Practical training /	Home Assignments
	Application of State -	5	a4, a8, b7, b11,	laboratory, Class activity, Case	Ouizzes , Oral Exam
	space on control systems		c6, c7, d2, d3	study, Assignments / homework	
12				Lectures, Practical training /	Home Assignments
	Application of State -	5	a4, a8, b7, b11,	laboratory, Class activity, Case	Quizzes, Oral Exam
	space on control systems		c6, c7, d2, d3	study, Assignments / homework	
13			a5, a8, b3, b4,	Lectures, Practical training /	Home Assignments
	Control Systems	_	b7.b11.c3.c6.	laboratory. Class activity. Case	Ouizzes . Oral Exam
	applications in electrical	5	c7.d6.d7	study. Assignments / homework	
	power engineering.		.,,	sea by, 1 2001g	
14	Control Systems		a5, a8, b3, b4,	Lectures, Practical training /	Home Assignments
	applications in electrical	5	b7.b11.c3.c6.	laboratory, Class activity, Case	Ouizzes . Oral Exam
	power engineering.		c7.d6.d7	study. Assignments / homework	
15	Homo Assignments Ouizzo	o Orol I			1
15	frome Assignments Quizze	s, Oral f	2 XaIII		
16					

4. Teaching and Learning Methods

Lectures Practical training / laboratory Class activity Case study Assignments / homework

5. Student Assessment Methods

COURSE SPECIFICATIONS (2011-2012)

FACULTY OF ENGINEERING

Assignments to assess knowledge and intellectual skills. Quiz to assess knowledge, intellectual and professional skills Mid-term exam to assess knowledge, intellectual, professional and general skills. Oral exam to assess professional, practical, general and transferable skills . Final exam to assess knowledge , intellectual skills , professional and practical skills .

6. Assessment schedule

Assessment 1 on weeks 2, 5, 9, 11 Assessment 2 Quizzes on weeks 4, 6, 10, 12 Assessment 3 Mid-term exam on week 8 Assessment 4 Oral Exam on week 14 Assessment 5 Final exam on week 15

7. Weighting of Assessments

Mid- Term Examination	10 %
Final-Term Examination	60 %
Oral Examination	10 %
Semester Work	15 %
Other	05 %
Total	100%

8. List of References

8.1 Course Notes

Handouts prepared by instructor.

8.2 Essential Books (Text Books)

* A textbook of Automatic Control Systems B. C. Kuo, 2004

* Feedback and control systems Shaum's series .

COURSE SPECIFICATIONS (2011-2012)

FACULTY OF ENGINEERING

8.3 Recommended books Control System Engineering by K. Ogata, 2007

9 Facilities Required for Teaching and learning

Lecture room equipped with overhead projector Presentation board, computer and data show

Course coordinator:	Prof. Dr. Wagdy Mohamed Mansour
Course instructor:	Prof. Dr. Wagdy Mohamed Mansour, Prof. Dr. Fahmy Bendary
Head of department:	Prof. Dr. Mousa Abd-allah

Date: 27 / 11 / 2011